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Bayesian Fine-Scale Mapping of Disease Loci, by Hidden Markov Models
A. P. Morris, J. C. Whittaker, and D. J. Balding
Department of Applied Statistics, University of Reading, Reading, United Kingdom

We present a new multilocus method for the fine-scale mapping of genes contributing to human diseases. The
method is designed for use with multiple biallelic markers—in particular, single-nucleotide polymorphisms for which
high-density genetic maps will soon be available. We model disease-marker association in a candidate region via
a hidden Markov process and allow for correlation between linked marker loci. Using Markov-chain–Monte Carlo
simulation methods, we obtain posterior distributions of model parameter estimates including disease-gene location
and the age of the disease-predisposing mutation. In addition, we allow for heterogeneity in recombination rates,
across the candidate region, to account for recombination hot and cold spots. We also obtain, for the ancestral
marker haplotype, a posterior distribution that is unique to our method and that, unlike maximum-likelihood
estimation, can properly account for uncertainty. We apply the method to data for cystic fibrosis and Huntington
disease, for which mutations in disease genes have already been identified. The new method performs well compared
with existing multi-locus mapping methods.

Introduction

The problem in the localization of genes contributing to
human diseases has been at the forefront of research in
genetic epidemiology for many years now. Linkage-
based analyses, often performed in candidate regions of
the genome, have had success in locating, to within 1
cM, genes contributing major effects to human disease.
However, for genes contributing less significant effects
to polygenic disorders, linkage methods have been
shown to be less powerful than population-based dis-
ease-marker–association studies (Risch and Merikangas
1996).

The key to population-based disease-gene mapping is
the relationship between physical distance and the
strength of disease-marker association. A higher level
of association with the disease at marker A than at
marker B suggests that, in previous generations, less
recombination has occurred between the disease gene
and marker A and thus that this marker is the closer of
the two to the disease gene. The simplest approach to-
ward identification of a likely location for a disease gene
on a map of candidate marker loci is a single-locus
approach. On the map, the marker with greatest evi-
dence of association with the disease is taken as being
most tightly linked to the predisposing gene.

Received January 27, 2000; accepted for publication April 20, 2000;
electronically published June 1, 2000.

Address for correspondence and reprints: Dr. Andrew Morris, Uni-
versity of Reading, Department of Applied Statistics, P.O. Box 240,
Earley Gate, Reading RG6 6FN, United Kingdom. E-mail: sns98am
@reading.ac.uk

� 2000 by The American Society of Human Genetics. All rights reserved.
0002-9297/2000/6701-0019$02.00

Greater power and accuracy to locate a disease gene
would be expected by taking account of information
from all markers, simultaneously, in the region of the
disease gene, in so called multilocus models. A number
of these multilocus methods have been proposed re-
cently (Terwilliger 1995; Xiong and Guo 1997; Collins
and Morton 1998) and have had some success in lo-
cating the known mutations for cystic fibrosis (CF),
Huntington disease (HD), Friedreich ataxia, and pro-
gressive myoclonus epilepsy. These methods rely on the
assumption of independent marker loci in the region of
the disease gene. Under this assumption, log likelihoods
are calculated for each marker in turn and summed to
form a composite log likelihood for the set of loci. This
assumption is, of course, incorrect, since we would ex-
pect correlation between linked markers. Composite
likelihoods are thus only an approximation for the full
likelihood obtained by use of complete haplotypes.

In the present report, we present a new multilocus
method for the mapping of disease genes, one that takes
account of correlation between linked marker loci. The
method is designed specifically for use with biallelic
markers such as single-nucleotide polymorphisms
(SNPs). Current research is likely to provide a highly
dense map of SNPs in the near future, in which they
are perhaps as frequent as one marker per kilobase of
the human genome (Kruglyak 1999).

Consider a disease that, as a result of a single mu-
tation at the disease locus a number of generations ago,
was introduced into a population. All affected individ-
uals today will be descended from this founder chro-
mosome. Thus, in a sample of chromosomes ascertained
today, the allele that we observe at an SNP linked to
the disease gene will depend on whether, at that locus,
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Figure 1 Odds ratios for association with CF, at 23 RFLPs in
the region of the CFTR gene on chromosome 7q31 (Kerem et al. 1989).

the chromosome is identical by descent (IBD) with the
founder chromosome. If, at the marker, the chromo-
some is IBD with the founder, we observe the ancestral
allele. If the chromosome is not IBD with the founder,
we may observe either the ancestral or the nonancestral
allele, the probability of which will depend on the rel-
ative population frequencies of the two alleles. The
probability that a chromosome is IBD with the founder
will be greater for a marker in the proximity of the
disease gene than for more-distant markers, since there
will have been less opportunity for recombination.
Thus, stronger disease-marker association will be ex-
pected at markers adjacent to the disease gene.

For a given location on a chromosome, IBD status
itself is not directly observable and can be thought of
as a hidden state. The probability of changing from one
hidden state to another at adjacent markers depends
only on previous recombination events between them
and thus can be modeled as a function of the physical
intermarker distance. For a fine-scale map of markers,
this probability will be small, and if it assumed that
there is no interference, will be independent of similar
probabilities defined in any other interval between ad-
jacent markers. Under these conditions, we can employ
a hidden Markov model (Rabiner 1989) to describe
marker haplotype frequencies in the vicinity of the dis-
ease gene, accounting for the correlation between linked
marker loci.

The model that we present here is similar to that of
McPeek and Strahs (1999), who also use a hidden Mar-
kov process to account for correlation between linked
marker loci. We employ Markov-chain Monte Carlo
(MCMC) stochastic simulation methods in a Bayesian
framework, which has a number of advantages over the
maximum-likelihood approach used by McPeek and

Strahs (1999). We are able to properly account for the
uncertainty in the ancestral marker haplotype—unlike
the method of McPeek and Strahs (1999), which treats
it as a nuisance parameter to be estimated. With this
approach, we obtain posterior distributions for model
parameter estimates, including disease-gene location
and the age of the mutation (for a complete list of the
model parameters used in the present study, see Appen-
dix A). In addition, the flexibility of this framework
allows us to incorporate heterogeneity in recombination
rates in the region of the disease gene, to account for
crossover hot and cold spots. We apply the method to
data for CF (Kerem et al. 1989) and HD (MacDonald
et al. 1991), for which mutations in disease genes al-
ready have been identified.

Models and Methods

In this section, we derive a model for disease-marker
association in a candidate region, using hidden Markov
processes. We begin with the simplest case—of a single
founding mutation of a normal allele at the disease locus
to a high-risk allele. Any chromosome in the current
generation can be divided into regions, each correspond-
ing to one of two possible ancestral states. A region may
be IBD with the ancestral founder chromosome and is
then labeled “F”; otherwise, the region does not descend
from the founder and is labeled “N.” The probability
that, at any given locus, a chromosome in the current
generation is IBD with the founder is denoted as “a.”

The occurrence of the different ancestral states, F or
N, along a chromosome is a result of recombination
events in previous generations. Consider two particular
loci on a chromosome selected at random from the cur-
rent generation. Given the chromosome’s ancestral state
at locus 1, it is straightforward to calculate the prob-
abilities of the two ancestral states at locus 2. Let “NR”
denote the event “no recombination has occurred be-
tween the loci”; then, for example,

Pr(locus 2 = FFlocus 1 = F)

= Pr(NR) � [1 � Pr(NR)]Pr(MRR = F) , (1)

where is used to denote the event “most recentMRR = F
recombination event occurred, at locus 2, with a chro-
mosome IBD with the founder”; similarly,

Pr(locus 2 = FFlocus 1 = N)

= [1 � Pr(NR)]Pr(MRR = F) , (2)

since a recombination event must have occurred be-
tween two loci of different ancestral states. We assume
that the probability that, at locus 2, a chromosome is
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Figure 2 Posterior distributions of model parameter estimates for the CF data of Kerem et al. (1989), under the assumption of independent
recombinational histories for case chromosomes. Estimates are obtained from every 100th of 1 million iterations of the Metropolis-Hastings
rejection-sampling scheme, after an initial burn-in period.

IBD with the founder has remained constant over time,
.Pr(MRR = F) = a

This principle can be generalized to more than two
loci on the chromosome. The probabilities of the two
ancestral states at any locus on the chromosome, given
the ancestral state at an adjacent locus on the chro-
mosome, depend only on recombination events between
the loci and not on recombination elsewhere along the
chromosome (under the assumption of no interference).
Thus, given the ancestral state at some starting locus of
a chromosome, we can calculate joint probabilities of
ancestral states at any other loci, using two independent
Markov chains, one acting on each side of the starting
locus.

Consider a map of SNPs with known location in a
candidate region of the chromosome and assume an
arbitrary location x for the disease locus, 0, on this map.
Given this location, the map is effectively divided into
two regions with “L” markers present to the left of the
disease locus and “R” markers present to the right. The
marker loci to the left of the disease locus are denoted
“�1, �2, …, �L,” where �1 is adjacent to the disease

locus, �2 is adjacent to �1, and so on; similarly, the
marker loci to the right of the disease locus are denoted
“1, 2, …, R.” The physical distances (in Mb) between
the disease locus and marker loci �1 and 1 are denoted
“d�1” and d1, respectively. The distance between any
pair of adjacent marker loci to the left of the disease
locus, �i and , is denoted “ ”; similarly,�(i � 1) d�(i�1)

denotes the distance between marker loci i andd(i�1)

to the right of the disease locus. The choice of(i � 1)
location of the disease locus, x, thus defines a unique
set of interlocus distances.

A chromosome can be considered as two independent
paths of ancestral states, conditional on the ancestral
state at the disease locus, S0. For the marker loci to the
left of the disease locus, the path is denoted “S =L

,” whereas, for marker loci to the{S ,S ,S ,...,S }0 �1 �2 �L

right, the path is denoted “ .”S = {S ,S ,S ,...,S }R 0 1 2 R

Consider the marker loci to the right of the disease
locus. The chromosome’s ancestral state at locus ,i � 1

, depends only on both the chromosome’s ancestralSi�1

state at locus i, Si, and the occurrence of previous gen-
erations of recombination events between the pair of
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Figure 3 Posterior distributions of model parameter estimates for the CF data of Kerem et al. (1989), under the assumption of a conditional
coalescent model for dependence between case chromosomes. Estimates are obtained from every 100th of 1 million iterations of the Metropolis-
Hastings rejection-sampling scheme, after an initial burn-in period.

Figure 4 Odds ratios for association with HD, at 27 RFLPs in
the region of the IT15 gene on chromosome 4p16 (MacDonald et al.
1991).

adjacent loci. In the same way as for equations (1) and
(2), we define transition probabilities of ancestrali�1tS Si i�1

state , at locus , given the chromosome’s an-S i � 1i�1

cestral state, Si:

i�1t = exp (�gd ) � [1 � exp (�gd )]aFF i�1 i�1
i�1t = [1 � exp (�gd )](1 � a)FN i�1 .i�1t = [1 � exp (�gd )]aNF i�1{
i�1t = exp (�gd ) � [1 � exp (�gd )](1 � a)NN i�1 i�1

Here, is the probability of no recombina-exp [�gd ]i�1

tion events in generations since the founding mutation
in the interval between marker loci i and . Thei � 1
parameter represents the expected frequency, sinceg 1 0
the founding mutation, of recombination events per 1
Mb of a chromosome in the candidate region. If we
assume that the physical distance of 1 Mb corresponds
to a genetic distance of 1 cM, then 100g can be inter-
preted as the number of generations since the founding
mutation.
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Table 1

Expected Frequencies of Alleles andMi1

at Marker Locus i, for KnownMi2

Disease Frequency Q, Sample-
Enrichment Factor k, and T = 1 +
Q(k51)

SAMPLE

FREQUENCY

Mi1 Mi2 Total

Cases Akf /Ti1
Akf /Ti2 Qk/T

Controls Uf /Ti1
Uf /Ti2 (1 � Q)/T

Total 1

Figure 5 Posterior distributions of model parameter estimates for HD data of MacDonald et al. (1991). Estimates are obtained from
every 100th of 1 million iterations of the Metropolis-Hastings rejection-sampling scheme, after an initial burn-in period.

Given values for the transition parameters a and g,
we can calculate the probability, r[SiFS0] , that a chro-
mosome is of ancestral state Si at marker locus i, con-
ditional on the chromosome’s ancestral state at the dis-
ease locus, S0, using the recursive formula

i[ ] [ ]r SFS = r S FS t ,�i 0 i�1 0 S Si�1 i
S =F,Ni

for all , and . Ancestral-state fre-1i 1 1 r [S FS ] = t1 0 S S0 1

quencies at loci to the left of the disease locus are cal-
culated in the same way, on the basis of an independent
Markov process defined in terms of the same model
parameters a and g.

The model described thus far can be used to calculate
the probability that, at any marker locus in the candi-
date region, a chromosome is IBD with the founder,
given the chromosome’s ancestral state at the disease
locus, S0. Of course, ancestral states are hidden and
cannot be observed. At each SNP in the candidate re-
gion, one of two possible alleles, denoted as “Mi1” and
“Mi2,” can occur at marker locus i. The marker allele
present is dependent only on the chromosome’s ances-

tral state at marker locus i and not on that elsewhere
in the region. If, at marker locus i, the chromosome is
IBD with the founder chromosome, then the allele pres-
ent will be the same allele that is present on the founder
chromosome, if it is assumed that no mutations have
occurred at the marker locus; if the chromosome is not
IBD with the founder, then either allele may be present,
with probability pi denoting the frequency of allele Mi1

on such chromosomes. Thus, given that a chromosome
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Table 2

Model Parameter Estimates for Complete CF Data of Kerem et al. (1989)

Parameter True Value
Initial
Value Estimate

99% Credibility
Interval

Location x .88 .6 .784 .731–.838
b 0 .1 �59.59 # 10 –�7 �48.20 # 10 3.47 # 10
a �22.24 # 10 … �22.23 # 10 –�2 �22.20 # 10 2.24 # 10
l .7 .9 .768 .703–.836
g … 1 2.05 1.37–2.86
� … 0 .250 .151–.361

2j … .1 �49.42 # 10 –�4 �38.18 # 10 1.07 # 10

NOTE.—Estimates are obtained from every 100th of 1 million iterations of the
Metropolis-Hastings rejection-sampling scheme after an initial burn-in period.

Table 3

Posterior Probabilities of Ancestral-State
Haplotypes at 23 RFLPs in the Region of the

MutationDF508

Ancestral Haplotype
Posterior

Probability

11112221112212121121111 .980
11212221112212121121111 .005
11112221112212121121211 .005
11112221112212121121112 .005
11112221112212121121121 .003
Other .002

NOTE.—Dependence between case chromo-
somes is modeled by the conditional coalescent
(McPeek and Strahs 1999).

is of ancestral state S0, the expected frequency of allele
Mi1 is given by

S0 [ ] [ ]m = q r S = FFS �p r S = NFS . (6)i1 i i 0 i i 0

The parameter qi is an indicator variable taking the
value 1 if allele Mi1 is present on the founder chro-
mosome and taking the value 0 otherwise. Clearly,

S S0 0 [ ] [ ]m = 1 � m = (1 � q )r S = FFS �(1 � p )r S = NFS .i2 i1 i i 0 i i 0

(7)

We have assumed here that, conditional on a set of
adjacent marker loci being in state N, the probability
of the observed haplotype is simply the product of the
allele frequencies pi or , at marker i, from which1 � pi

it is constructed. McPeek and Strahs (1999) have sug-
gested the use of a kth-order (in practice, ) Mar-k = 1
kov-chain model for haplotype frequencies across loci
in state N. Such an approach could be easily incorpo-
rated into the model presented here.

Consider a sample of nA chromosomes obtained from
affected cases and nU chromosomes obtained from un-
affected controls. We do not assume here that we can
identify homologous pairs of chromosomes occurring
together in the same individual in the sample. If this
information is known, it can be easily incorporated in
the analysis.

We cannot directly identify the chromosome’s ances-
tral state at the disease locus. Instead, we observe the
disease phenotype of the individual from whom it isP

obtained, assumed here to be either affected ( ) orP = A
unaffected ( ). The disease phenotype of an indi-P = U

vidual depends on the ancestral state at the disease locus
on their pair of homologous chromosomes. Since we do
not assume that we can identify homologous pairs of
chromosomes occurring together in the same individual
in the sample, we average over the possible ancestral
states, , at the disease locus for the second chromo-′S0

some, weighting by their relative frequencies:

′ ′Pr(PFS ) = Pr(PFS ,S = F)a � Pr(PFS ,S = N)(1 � a) .0 0 0 0 0

(8)

We assume a multiplicative model for the disease,
with parameters bF and bN for the ancestral states

and , respectively, at the disease locus.S = F S = N0 0

Thus, the penetrance of genotype is given by′S S0 0

. Hence,′Pr(P = AFS S ) = b b ′0 0 S S0 0

2Pr(P = AFS = N) = b b a � b (1 � a) = f0 F N N N
2Pr(P = AFS = F) = b a � b b (1 � a) = f0 F F N F .2Pr(P = UFS = N) = (1 � b b )a � (1 � b )(1 � a)= 1 � f0 F N N N{

2Pr(P = UFS = F) = (1 � b )a � (1 � b b )(1 � a) = 1 � f0 F F N F

(9)

Under this model, we can calculate expected SNP fre-
quencies in affected and unaffected individuals in the
population. As an example, consider marker locus i.
The probability that a chromosome is obtained from an
individual of disease phenotype and bears allele MijP

at marker locus i is denoted by “ .” Then,Pfij
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Table 4

Model Parameter Estimates for HD Data of MacDonald et al. (1991)

Parameter
True
Value

Initial
Value Estimate

99% Credibility
Interval

Location x 2.5–2.6 2.2 2.52 2.20–2.75
b 10 .1 �32.08 # 10 –�3 �31.84 # 10 2.28 # 10
a … … �31.09 # 10 –�4 �38.87 # 10 1.32 # 10
l … .9 .854 .564–.998
g … 1 1.37 .772–2.06
� … 0 .111 .024–.177

2j … .1 �96.88 # 10 –�9 �86.00 # 10 7.60 # 10

NOTE.—See Note to table 3.

Pf = Pr(P ∩ M )ij ij

= Pr(P ∩ M FS = F)a � Pr(P ∩ M FS = N)(1 � a)ij 0 ij 0

F N= Pr(PFS = F)m a � Pr(PFS = N)m (1 � a) ,0 ij 0 ij

(10)

since disease status and SNP type are independent, con-
ditional on the chromosome’s ancestral state at the dis-
ease locus. Thus, when we substitute for the appropriate

from equation (9) and for from equationsS0Pr(PFS ) m0 ij

(6) and (7),

A F Nf = m f a � m f (1 � a) ,i1 i1 F i1 N

A F Nf = m f a � m f (1 � a) ,i2 i2 F i2 N

U F Nf = m (1 � f )a � m (1 � f )(1 � a) ,i1 i1 F i1 N

U F Nf = m (1 � f )a � m (1 � f )(1 � a) .i2 i2 F i2 N

In a case-control study, affected individuals are ascer-
tained with greater probability than is their population
frequency, so that a sample will be enriched with case
chromosomes. We denote by the observed frequen-Pnij

cies of allele Mij in the sample of chromosomes obtained
from individuals of disease phenotype . Table 1 pre-P

sents the expected case-control frequencies of SNP al-
leles at marker locus i. The parameter Q is the popu-
lation frequency of the disease, which is assumed to be
known, and k is a sample-enrichment factor: k =

. The expected frequencies are scaled{[(1 � Q)n ]/Qn }A U

by the parameter to sum to 1.T = 1 � Q(k � 1)

Allowing for Mutations at Marker Loci

In deriving the model thus far, we have assumed that
no mutations at marker loci have occurred since the
founding disease mutation on the ancestral chromo-
some. The method is designed for use with SNPs, which
are thought to have low mutation rates in humans,
∼10�8–10�9/locus/generation (Nielsen 2000). For recent
disease mutations, the effects of such a low rate of mu-

tation will be negligible. Nevertheless, we may wish for
the model to account for marker mutation.

Under the assumption of no marker mutation, we ob-
serve, at that locus, only the ancestral allele at marker
i on a chromosome IBD with the founder. However, if
we allow for marker mutation, we may observe the non-
ancestral allele at a locus in state F. In terms of the
indicator parameter for marker i,

100g(1 � m) if allele M present on founder chromosomei1 ,100g{1 � (1 � m) otherwise

where m is the mutation rate per locus per generation
and 100g is the number of generations since the found-
ing mutation.

Allowing for Phenocopies

The model described has assumed, thus far, that all
mutant chromosomes have descended from a single an-
cestral founder. This assumption is unlikely to be realistic
for most human diseases (Penisi 1998). Phenocopies may
occur either as a result of multiple mutations in the same
gene or, especially for complex diseases, as a result of
the effects of multiple susceptibility loci and the envi-
ronment. In this section, we develop the model to allow
for phenocopies, under the assumption that there is a
single major mutation that accounts for a substantial
proportion of affected individuals in the current gen-
eration. This is true, for example, of CF, for which the
major DF508 mutation in the CFTR gene accounts for
almost 70% of all chromosomes in affected individuals,
with many other mutations in the same gene accounting
for the remaining 30% (Kerem et al. 1989). Previous
approaches, with the exception of that of McPeek and
Strahs (1999), fail to explicitly allow for this in their
association models.

Assume that the major mutation (F) accounts for a
proportion l of all mutant chromosomes in the current
generation and that the major mutation and all other
mutations ( ) have the same penetrance, bF. If equation

—
F
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(8) is generalized to allow for three possible ancestral
states,

′Pr(P = AFS ) = Pr(P = AFS ,S = F)al0 0 0

—′�Pr(P = AFS ,S = F)a(1 � l)0 0

′�Pr(P = AFS ,S = N)(1 � a) .0 0

Hence, as defined in equation (9),

Pr(P = AFS = N) = f0 N — . (11){Pr(P = AFS = F) = Pr(P = AFS = F) = f0 0 F

Then, in the same way as for equation (10),

——P F Ff = Pr(PFS = F)m al � Pr(PFS = F)m a(1 � l)ij 0 ij 0 ij

N�Pr(PFS = N)m (1 � a) ,0 ij

where the appropriate is obtained from equa-Pr(PFS )0

tion (11). However, since the phenocopies may be spu-
rious or will have descended from many different an-
cestral founding chromosomes, we assume that, in terms
of the occurrence of marker alleles, they are indistin-
guishable from any chromosome not bearing the major
mutation at the disease locus; in other words,

—
Fm =ij

as defined in equations (6) and (7).Nmij

Likelihood Calculations

Expected SNP allele frequencies to the left and right
of the disease locus are determined by independent Mar-
kov processes. Thus, over the whole candidate region,
the log-likelihood of a sample of data for a fixed location
of the disease gene, x, and a given set of hidden Mar-
kov–model parameters is given by

�(dataFx,G,p,w) = �(dataFx,G,p,w) � �(dataFx,G,p,w) ,TOT L R

where is a vector of model parameters,G G =
, and and are vectors of allele fre-T(a,b ,b ,g,l) p wF N

quencies and ancestral indicators, respectively:

Tp = (p ,p ,...,p ,p ,p ,p ,...,p ,p ) ,�L �(L�1) �2 �1 1 2 R�1 R

and

Tq = (q ,q ,...,q ,q ,q q ,...,q ,q ) .�L �(L�1) �2 �1 1 2 R�1 R

The log-likelihood to the right of the disease locus is
given by

R 2 U

P P[ ]�(dataFx,G,p,w) = n ln f �C ,���R ij ij R
i=1 j=1 P=A

where CR is constant for a known population disease
frequency Q: . The indepen-C = Rkn � RT (n � n )R A A U

dent log-likelihood to the left of the disease locus is cal-
culated similarly.

Parameter Estimation

The hidden Markov model described here is overpa-
rameterized. We reduce the number of free parameters
by noticing the following relationships.

First, the population frequency of the disease is given
by

2 2 2 2Q = a b � 2a(1 � a)b b � (1 � a) b .F F N N

The frequency of the disease is generally known so that
we can eliminate a from the likelihood calculation:

2 2 2 2��2b (b � b ) � 4b (b � b ) � 4(b � b ) (b � Q)N F N N F N F N N
a =

22(b � b )F N

�Q � bN
= ,

b � bF N

since .a 1 0
Second, the likelihood is constant for a fixed ratio of

disease-model parameters . Thus, the two pa-b = b /bN F

rameters can be eliminated from the likelihood and can
be replaced by a single penetrance parameter for which

, since it is assumed that, at the disease locus, theb � 1
mutation has greater propensity for the development of
the disease than does the normal allele. Overall, for a
known disease frequency Q, the vector of model param-
eters to be estimated reduces to , togetherTG = (b,g,l)
with the allele frequencies and ancestral indicators.

We use MCMC methods to obtain posterior distri-
butions for the model parameter estimates. The advan-
tage of this approach is that we can incorporate prior
information for the model parameters—which may be
useful if we have reliable values for the age of the mu-
tation or disease model, for example. We employ a Me-
tropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) to obtain realizations of each model pa-
rameter by sampling from the full conditional distri-
bution, using a rejection-sampling scheme. Each itera-
tion of the sampling scheme consists of a six-step
procedure summarized in Appendix B. From initial pa-
rameter values, the algorithm is run for a substantial
burn-in period, to allow convergence. During the sub-
sequent sampling period, realizations of the parameter
set are recorded every 100th iteration. Over many it-
erations, posterior distributions of parameter estimates
are obtained from these realizations.
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Allowing for Heterogeneity in Recombination Rates

In developing the hidden Markov model for fine-scale
mapping, we have assumed a constant ratio of recom-
bination fraction to physical distance across the whole
of the candidate region. However, it is thought that re-
combination hot spots and cold spots occur along the
genome. Lazzeroni (1998) accounts for heterogeneity in
recombination rates in a generalized least-squares ap-
proach to fine-scale mapping, by allowing the ratio of
physical distance to genetic distance to be different to
the left and to the right of the disease locus. However,
this may not be sufficient to allow for the variability in
recombination rates, particularly in larger candidate
regions.

As an alternative, we propose that the ratio of physical
distance to genetic distance across the candidate region
can be described by a first-order Gaussian autoregressive
process. We divide the candidate region into K equal
intervals so that the rate of recombination, yr, in the rth
interval is given by and∗y = m � e y = m � �(y �1 1 r r�1

, where m is the mean recombination rate acrossm) � er

the region and � is the first-order correlation coefficient.
The errors are assumed to be independently distributed,
so that and for∗ 2 2 2e ∼ N(0,j /(1 � �) ) e ∼ N(0,j ) r =1 r

. The log-likelihood of a sample of K recombi-2,3,...,K
nation rates from this process is then given by

K2 2 2�(yFm,�,j ) = � ln (2pj ) � ln (1 � � )AR1 2
2 2(y � m) (1 � � )1� 2j

K1 2[ ]� (y � m) � �(y � m) .� r r�12j r=2

We assume that m is known from existing physical and
genetic maps. Uncertainty for this parameter can be in-
corporated by assuming a tight prior distribution for m,
centered about the estimated ratio. For example, in the
region of the CFTR gene for CF, a physical distance of
1.6 Mb corresponds to a genetic distance of ∼0.8 cM
(Collins et al. 1996)—in other words, .m = .5

The recombination rates across the region can then
be used in calculating the probability of no recombi-
nation events in the interval between any pair of adja-
cent marker loci; for example, the probability of no re-
combination events in the interval between marker i and

is given by , wherei � 1 exp [�gd v ] v =i�1 i�1 i�1

and pr denotes the proportion of the rthK KS y p /S pr=1 r r r=1 r

recombination-rate interval contained in the interval be-
tween the two marker loci. The log-likelihood of the
sample of data for a given set of recombination rates

and hidden Markov–model parameters is expressed byy

. The recombination rates are, in ef-�(dataFx,G,p,w,y)TOT

fect, nuisance parameters, so that

2�(dataFx,G,p,w) = �(dataFx,G,p,w,y) �(yFm,�,j ) .TOT � TOT AR1
y

In this way, we can then incorporate heterogeneous re-
combination rates into the Metropolis-Hastings rejec-
tion-sampling scheme for the model parameters as de-
scribed in Appendix B.

Allowing for Nonindependent Recombinational
Histories

In developing the hidden Markov model for disease-
marker association in the region of a disease gene, we
have assumed independent recombinational histories for
each chromosome in the sample. However, the key to
this approach to disease-gene mapping is that all—or at
least a majority of—affected individuals share a recent
single common ancestor bearing the disease-predispos-
ing mutation. Treating the recombinational histories as
independent is equivalent to assessing a star-shaped ge-
nealogy, which is not consistent with likely demographic
scenarios for the development of a disease mutation in
a finite population. Instead, we expect particular pairs
of chromosomes to have a more recent common ances-
tor than do other pairs of chromosomes—and, conse-
quently, to share a greater proportion of their recom-
binational history. The effect of this shared ancestry is
to down-weight the contribution of each case chromo-
some to the total log-likelihood by a factor [1 � (n �A

, where c is given by�11)c]

�1
� n � i � 1Ai�1� (�1) ( )n �2 [ ]A n � ki=1 A2(n � 2)!(n � 1)A A .�

n � 1 (n � k � 1)(n � k � 2)(n � k)(k � 1)!(n � k � 2)!k=1A A A A A

Since the correction factor is !1, we effectively down-
weight the contribution of each case chromosome to the
total log-likelihood, to account for the dependence be-
tween them. We emphasize here that a quasi-likelihood
approach is not applicable in a Bayesian framework; but
it does suggest the use of a likelihood approximation.
We propose to multiply the log-likelihood calculated un-
der a star-shaped genealogy by the same correction fac-
tor. This has the effect of increasing the variance of the
posterior distribution, to account for the shared ancestry
of the case chromosomes.

Examples

To illustrate our proposed method, we consider two dis-
eases: CF and HD. Mutations responsible for the oc-
currence of these two diseases have been located on the
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genome and are thus ideal for testing the accuracy and
precision of the new method. In this section, we apply
the proposed method to marker-haplotype data collected
in candidate regions for the two disease genes (Kerem
et al. 1989; MacDonald et al. 1991). In both samples,
cases and controls have been typed by RFLPs. Since these
markers have low rates of mutation, we have assumed
that , corresponding to no marker mutation in them = 0
period since the founding disease mutation.

CF

CF is one of the most common autosomal recessive
disorders affecting whites, occurring with an incidence
of 1 case/2,000 births. Initial scans of the genome in the
1980s provided evidence of a single CF gene on chro-
mosome 7q31 (Kerem et al. 1989). More recently, a 3-
bp deletion (DF508) has been identified within this re-
gion in the CFTR gene. It is now known that DF508
accounts for ∼68% of all chromosomes in affected in-
dividuals today, with the remainder consisting of several
other, rarer mutations in the same gene. Kerem et al.
(1989) collected marker data from affected cases and
healthy controls, using 23 RFLPs in a 1.8-Mb candidate
region of chromosome 7q31, from the MET locus to
marker D7S426.

Figure 1 presents odds ratios for each of the RFLPs
in the candidate region. There is strongest evidence of
disease-marker association in a region of 0.6–0.9 Mb
from the MET locus, with a peak observed at 0.869 Mb.
Within this region, however, there is a single marker,
0.889 Mb from the MET locus, at which disease-marker
association is much lower. This marker is, in fact, closest
to the DF508 mutation in the CFTR gene, at ∼0.880
Mb from the MET locus.

Previous analyses of these data by published methods
have yielded a variety of results. Terwilliger (1995)
places the mutation 0.77 Mb from the MET locus, with
a 99.9% support interval of 0.69–0.87 Mb. Although
this interval overlaps part of the CFTR gene, it does not
include the DF508 mutation. Xiong and Guo (1997)
obtained an improved estimate of the location of DF508,
at 0.80 Mb, although this was derived from only a se-
lected subset of the CF data, a subset for which any case
chromosomes not bearing the DF508 mutation were ex-
cluded. With additional information for the region of
the mutation (Morral et al. 1994), Collins and Morton
(1998) analyzed the same subset and obtained an esti-
mate of 0.83 Mb.

We applied the hidden Markov model–based mapping
method proposed here to the complete CF data set of
Kerem et al. (1989). We assumed a disease frequency of

, on the basis of estimates for the populationQ = .0005
from which the sample was ascertained. We also as-
sumed a mean recombination rate of .5, since, in the

candidate region around the CFTR gene, the physical
distance of 1.6 Mb corresponds to a genetic distance of
0.8 cM (Collins et al. 1996). A number of sets of initial
values for the model parameters were considered, all
resulting in similar posterior distributions and parameter
estimates after an initial burn-in period of the Metrop-
olis-Hastings rejection-sampling scheme followed by a
sampling period of a further 1 million iterations for
which every 100th iteration was recorded. Regardless of
the starting values for the model parameters, there is
rapid convergence to parameter estimates, which also
appear to mix well (data not shown).

Figure 2 presents the posterior distributions of the
location of the mutation, the hidden Markov–model pa-
rameters b, a, l, and g, and the first-order autoregressive
parameters � and for recombination-rate heteroge-2j

neity across the candidate region, when independent re-
combinational histories for the case and control chro-
mosomes are assumed. Also presented is the distribution
of the hidden Markov–model log-likelihood obtained
throughout the sampling period. Table 2 presents the
initial parameter values for this run, together with the
true parameter values (where known) and summary sta-
tistics from the posterior distributions.

The mean estimate of the location of the mutation is
Mb from the MET locus, with a 99% credi-x̂ = 0.784

bility interval of 0.731–0.838 Mb. Although there is
substantial error in this estimate, the results are consis-
tent with estimates obtained by other case-control–based
mapping methods, which have been described above.
The frequency of the mutation is estimated as â =

. This is in agreement with a mutation-frequency.223
estimate of .224 based on a fully penetrant recessive
disease with frequency .0005 (Kerem et al. 1989). The
estimate of the disease-model parameter approachesb̂

0, which is as would be expected for a fully penetrant
recessive disease for which and . The esti-b = 1 b = 0F N

mated major-mutation proportion is , which isl̂ = .768
close to the estimate that 70% of existing CF chromo-
somes bear the DF508 mutation. The estimated age of
the mutation is , corresponding to 205 gener-ĝ = 2.05
ations. Again, this is not inconsistent with other, inde-
pendent estimates of the age of DF508, which suggest
that it is ∼200 generations old (Serre et al. 1990). Cred-
ibility intervals for the first-order autoregressive param-
eters do not include 0, suggesting that there is recom-
bination-rate heterogeneity across the candidate region.

For comparison, we have also applied the hidden Mar-
kov model–based mapping method to the same set of
data but have modeled dependence between case chro-
mosomes by using the conditional coalescent as pro-
posed by McPeek and Strahs (1999). Figure 3 presents
the posterior distribution of the model parameters that
is based on every 100th of 1 million iterations of the
Metropolis-Hastings rejection-sampling scheme, with
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the log-likelihood being corrected for between-chro-
mosome correlations.

We obtain an improved estimate of the location of
DF508: 0.798 Mb from the MET locus, with a 99%
credibility interval of 0.610–1.069 Mb, this time with
the true location of the mutation being included. The
other model parameter estimates remain relatively un-
changed, but with noticeably wider posterior credibility
intervals (data not shown). The exception is in the first-
order autoregressive-process–correlation parameter, the
mean estimate of which is considerably closer to 0 under
the coalescent model (.053) than under independence
(.250). This would suggest that much of the correlation
between marker loci is accounted for by the correlation
between related chromosomes.

With the same correction, McPeek and Strahs (1999)
estimate the location of the mutation to be 0.95 Mb
from the MET locus, with a 99% confidence interval of
0.28–1.62 Mb (calculated on the basis of their presented
95% confidence interval). The difference, in estimated
location, between the two methods is likely a result of
McPeek and Strahs’s (1999) assumption of a homoge-
neous recombination rate of 1 cM–1 Mb across the map
of marker loci.

Table 3 presents the posterior ancestral-haplotypes
probabilities realized over the 1 million iterations of the
Metropolis-Hastings rejection-sampling scheme. There
is complete agreement over all but the markers most
distant from the DF508 mutation at which levels of dis-
ease-marker association are weakest. For this particular
sample, maximizing the model likelihood over the an-
cestral haplotype, as in the method of McPeek and Strahs
(1999), would be expected to yield results similar to
those of our proposed method, since the maximum-like-
lihood estimate has such high posterior probability. With
less certainty with regard to ancestral haplotypes, max-
imum-likelihood–based approaches may suffer bias and
warrant further investigation.

HD

HD is a midlife-onset autosomal dominant neurode-
generative disorder occurring at an incidence of ∼1 case/
10,000. The HD gene was first mapped to chromosome
4p16, in the region of marker D4S10, by Gusella et al.
(1983, 1984). More recently, the Huntington’s Disease
Collaborative Research Group (1993) has identified
within this region a large gene (IT15) with an expand-
able unstable trinucleotide-repeat sequence. It is now
known that IT15 genes with many repeats of the tri-
nucleotide sequence are responsible for the development
of the disease. MacDonald et al. (1991) collected marker
data from HD and normal chromosomes in a 2.5-Mb
region of chromosome 4p16, from marker D4S90 to
D4S10, using 27 RFLPs.

Figure 4 presents odds ratios for each of the RFLPs
in the candidate region. The strongest evidence of dis-
ease-marker association lies in the interval between
markers D4S182 and D4S180, at 2.38 Mb and 2.85 Mb,
respectively, from marker D4S90. This is in agreement
with the location of IT15 at ∼2.5–2.6 Mb from marker
D4S90. As in the CF data of Kerem et al. (1989), there
are RFLPs with low levels of disease-marker association
within this interval. Despite this apparent inconsistency,
Xiong and Guo (1997), using their case-control–based
mapping method, obtained 2.62 Mb from marker
D4S90 as the estimated location of the disease gene.

We also have applied the hidden Markov model–based
mapping method to the HD data of MacDonald et al.
(1991). We assumed independent recombinational his-
tories for the case chromosomes and a disease frequency
of , in line with published estimates for pop-�4Q = 10
ulations of European descent. We also assumed a mean
recombination rate of 1 in the candidate region, so that
the usual 1 Mb– to–1 cM correspondence holds. We
considered various sets of initial values for the model
parameters, all resulting in similar posterior distribu-
tions and parameter estimates after the same burn-in
period and sampling period that were employed in the
analysis of the CF data.

Figure 5 presents, for the HD data, the posterior dis-
tributions for the hidden Markov model and autore-
gressive parameters. Summary statistics from the pos-
terior distributions of model parameters are presented
in table 4, together with true values (where known). The
mean estimate of the location of the mutation is 2.52
Mb from marker D4S90, with a 99% credibility interval
of 2.20–2.75 Mb. The mean estimate is accurate, being
contained within the IT15 gene for HD. The wide cred-
ibility interval reflects the considerable variation in the
strength of disease-marker association in the IT15 gene
(fig. 4).

The estimate of the disease model parameter b̂ =
is 10, which we would expect for a dominant�32.1 # 10

disease. The estimated age of the mutation is ,ĝ = 1.37
corresponding to 137 generations, and is not inconsis-
tent with other estimates of the age of HD (Kaplan et
al. 1995; Xiong and Guo 1997). Credibility intervals for
the autoregressive parameters do not include 0, sug-
gesting recombination-rate heterogeneity across the can-
didate region.

Discussion

We have presented a new multilocus method for the fine-
scale mapping of disease genes. We model disease-
marker association in the vicinity of a disease gene by
means of a hidden Markov process used in a way similar
to that employed by McPeek and Strahs (1999). In this
way, both models account for correlation between the
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markers, a clear advantage over many existing multilo-
cus composite-likelihood methods that assume inde-
pendence (Terwilliger 1995; Xiong and Guo 1997; Col-
lins and Morton 1998). In addition, both models allow
for mutation at marker loci.

We employ MCMC methods in a Bayesian frame-
work, to obtain posterior distributions for model pa-
rameter estimates including those for disease-gene lo-
cation and the age of the disease-predisposing mutation.
A potential advantage of this approach, over both the
maximum-likelihood estimation used by McPeek and
Strahs (1999) and other existing multipoint methods, is
that, where appropriate, we are able to incorporate
prior information for model parameters. In addition, by
integrating over the marker haplotype present on the
founding chromosome, we allow for the uncertainty in
its makeup, in contrast to McPeek and Strahs (1999),
who consider only the maximum-likelihood estimate.

Our model is more sophisticated than previous mod-
els in that we allow for recombination-rate heteroge-
neity across the candidate region, using a first-order
Gaussian autoregressive process. In this way, we can
allow for recombination hot spots and cold spots that
may lead to bias in existing models. However, it would
be relatively straightforward to incorporate variable re-
combination rates in the model proposed by McPeek
and Strahs (1999).

We have used our method to identify the location of
two known mutations—one for CF and one for HD.
For HD, we obtain an accurate estimate of the location
of the mutation within the IT15 gene, which is known
to be responsible for the development of the disorder.
In deriving the hidden Markov model for disease-
marker association, we have assumed a multiplicative
model for the disease. HD is a dominant (i.e., non-
multiplicative) disorder, suggesting that our method is
robust to deviations from a multiplicative-disease
model.

For CF, we have presented two sets of simulation
results, corresponding to two possible models of de-
pendence in the recombinational histories of chromo-
somes in affected individuals. First, we have assumed
independence, implying a star-shaped genealogy, which
yields, for the location of the mutation, a 99% credi-
bility interval that does not contain the true location of
DF508. This result is consistent with analyses of the
same data set by other multilocus models that assume
independence between case chromosomes (Terwilliger
1995; Xiong and Guo 1997; Collins and Morton 1998).

This clearly suggests deficiency in the star-shaped ge-
nealogical model of case-chromosome ancestry. For the
second set of simulations, we correct for correlation
between case chromosomes by means of a conditional
coalescent model of dependence, proposed by McPeek
and Strahs (1999). They justify the correction by means
of quasi-likelihood arguments (Wedderburn 1974) that
do not hold in a Bayesian framework. However, the
same arguments suggest the use of an approximate log-
likelihood, calculated by multiplication, by a correction
factor, of the log-likelihood under independent recom-
binational histories (McPeek and Strahs 1999). This has
the effect of increasing the variance of the posterior
distribution, to account for the shared ancestry of case
chromosomes.

An alternative approach to take account of the de-
pendence between chromosomes is to model their an-
cestry directly, by means of a genealogical tree. In such
a model, we can explicitly allow for multiple disease
mutations, mutations at marker loci within the candi-
date region, and recombination events in the ancestry
of the case sample. Lam et al. (2000) have constructed
a genealogical tree for case chromosomes by using a
combination of parsimony and likelihood methods, in
which each chromosome in the tree is separated from
its parent by a single marker mutation or recombination
event. They then proceed to map the disease mutation
as if the tree were known with certainty. A more ap-
propriate approach would be to integrate over all pos-
sible genealogies, an approach that can be approxi-
mated by simulation. Graham and Thomson (1998)
used such an approach to generate genealogical trees
that are consistent with an observed sample of chro-
mosomes, using a Moran (1962) model with known
demographic parameters. However, their model as-
sumes knowledge of the ancestral marker haplotype, the
number of generations since the common ancestor, and
the development of the population during this period.
It is currently restricted to interval mapping using pairs
of marker loci. Generalization of this approach to a full
multilocus analysis with less stringent assumptions re-
mains a challenge that will require considerable work
in the future.
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Appendix A

Summary of Model Parameters

Parameter Range Definition
a [0,1] Probability that chromosome is IBD with founder, at any given locus
bF [0,1] Disease model parameter associated with mutation at disease locus
bN [0,1] Disease model parameter associated with normal allele at disease locus
g [0,�] Recombination-rate parameter per 1 Mb of DNA in candidate region
pi [0,1] Frequency of allele Mi1 on chromosomes not IBD with founder, at locus i
qi 0 or 1 Indicator variable denoting presence/absence of allele Mi1
Q [0,1] Population frequency of disease
k [0,�] Sample-enrichment factor

Appendix B

Metropolis-Hastings Rejection-Sampling Scheme

Each iteration of the Metropolis-Hastings sampling
scheme consists of a seven-step procedure. We denote
the current parameter set by x, , , and . In addition,G p w
the current set of recombination rates is denoted , mod-y
eled as a first-order autoregressive process with known
mean recombination rate m and current parameters �
and . If we do not wish to allow for heterogeneity in2j

recombination rates across the candidate region, y = 1
and we ignore step 7 of the sampling scheme. The like-
lihood of a sample of cases and controls for the current
parameter set is denoted . The like-L(dataFx,G,p,w,y)TOT

lihood of the set of recombination rates for the current
parameter set is denoted . Throughout, we2L(yFm,�,j )AR1

assume each � to be drawn at random from the proposal
distribution U(�.5,.5) and each u to be drawn from
U(0,1).
1. For each marker j in turn, propose a new allele
frequency, , where determines the maxi-∗p = p � n � nj j p p

mum possible change from the current allele frequency.
Since , proposed allele frequencies outside thisp � [0,1]j

range are reflected back into the parameter space. The
likelihood for the proposed parameter set is denoted

where is the vector of currentj∗ j∗L(dataFx,G,p ,w,y) pTOT

allele frequencies with replaced by the proposed .∗p pj j

The proposed allele frequency is accepted to the current
parameter set if the acceptance probability is

j∗L(data F x,G,p ,w,y)TOT
a = min ,1 1 u .[ ]L(data F x,G,p,w,y)TOT

2. For each marker j, in turn, propose a new ancestral
indicator:

0 if � � 0∗q = .j {1 if � 1 0

The likelihood for the proposed parameter set is denoted
where is the vector of currentj∗ j∗L(dataFx,G,p,w ,y) wTOT

ancestral indicators with replaced by the proposedqj

. We then accept the proposed ancestral indicator to∗qj

the current parameter set if the acceptance probability
is

j∗L(dataFx,G,p,w ,y)TOT
a = min ,1 1 u .[ ]L(dataFx,G,p,w,y)TOT

3. Propose a new location for the disease gene, ∗x =
, where the parameter determines the maximumx � n � nx x

change from the current disease gene location. We re-
strict the location of the disease gene to the candidate
region, so that proposed locations distal to the first and
last markers on the map are reflected back into the can-
didate region. The likelihood for the proposed parameter
set is denoted and the proposed∗L(dataFx ,G,p,w,y)TOT

location is accepted to the current parameter set if

∗L(dataFx ,G,p,w,y)TOT
a = min ,1 1 u .[ ]L(dataFx,G,p,w,y)TOT

4. Propose a new penetrance parameter, ,∗b = b � n �b

where determines the maximum change from the cur-nb

rent penetrance parameter. The penetrance parameter is
restricted to so that proposed penetrances out-b � [0,1]
side this range are reflected back into the parameter
space. The likelihood for the proposed parameter set is
denoted where is the vectorb∗ b∗L(dataFx,G ,p,w,y) GTOT

of current hidden Markov–model parameters with b re-
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placed by the proposed . The proposed penetrance∗b

parameter is then accepted to the current parameter set
if the acceptance probability is

b∗L(dataFx,G ,p,w,y)TOT
a = min ,1 1 u .[ ]L(dataFx,G,p,w,y)TOT

5. Propose a new age of the mutation, ,∗g = g � n �g

where determines the maximum change from the cur-ng

rent age of the mutation. The age of the mutation is
restricted to be positive so that a negative proposed age
is reflected back into the valid parameter space. The
likelihood for the proposed parameter set is denoted

, where is the vector of currentg∗ g∗L(dataFx,G ,p,w,y) GTOT

hidden Markov–model parameters with g replaced by
the proposed . The proposed age of the mutation is∗g

then accepted to the current parameter set if the accep-
tance probability is

g∗L(dataFx,G ,p,w,y)TOT
a = min ,1 1 u .[ ]L(dataFx,G,p,w,y)TOT

6. Propose a new major mutation proportion, ∗l =
, where determines the maximum change froml � n � nl l

the current proportion. Since l is a proportion, it is
restricted to [0,1]. Proposed proportions outside this
range are reflected back into the valid parameter space.
The likelihood for the proposed parameter set is denoted

, where is the vector of currentl∗ l∗L(dataFx,G ,p,w,y) GTOT

hidden Markov–model parameters with l replaced by
the proposed . The proposed major mutation propor-∗l

tion is then accepted to the current parameter set if the
acceptance probability is

l∗L(dataFx,G ,p,w,y)TOT
a = min ,1 1 u .[ ]L(dataFx,G,p,w,y)TOT

7. Propose a new set of K recombination rates so that,
for each , , where determines∗i = 1,2,...,K y = y � n � ni i y y

the maximum change from the current recombination
rates. Each recombination rate is restricted to be non-
negative so that negative proposals are reflected back
into the valid parameter space. In the same step, we also
propose new autoregressive parameter values, ∗� =

and , where and determine the∗ ∗� � n � j = j � n � n n� j � j

maximum change in parameter values for � and j, re-
spectively. The correlation parameter and the� � [0,1]
standard deviation j is restricted to be positive. Pro-
posals outside the permitted space are reflected back to
valid parameter values. The likelihoods for the proposed
parameters and recombination rates are denoted

and . The com-∗ ∗ ∗2 ∗L(y Fm,� ,j ) L(dataFx,G,p,w,y )AR1 TOT

plete set of proposed recombination rates and autore-
gressive parameters are accepted to the current set if

∗ ∗ ∗ ∗2L(dataFx,G,p,w,y ) L(y Fm,� ,j )TOT AR1
a = min ,1 1 u .2[ ]L(dataFx,G,p,w,y) L(yFm,�,j )TOT AR1

At any stage we can incorporate prior distributions for
model parameters by multiplying the appropriate accep-
tance probability by the ratio of prior probabilities for
the proposed and current parameter values.
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